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Abstract

This paper investigates the interplay between contextual factors, personal vari-
ables, and algorithm aversion in decision delegation behavior. In an experimental
setting with four treatments —baseline, explanation, payment, and automation—
subjects chose whether to delegate decisions to an algorithm, considering hid-
den expected values. Employing Random Forests, Gradient Boosting Machines,
and causal analysis with the Uplift Random Forest, we probed key algorithm
aversion drivers. In the personal dimension, we assessed Big Five Personality
Traits, Locus of Control, Generalized Trust, and demographics. We find that pay-
ment reduced delegation, while full automation promoted it. Factors like Age,
Extraversion, Openness, Neuroticism, and Locus of Control consistently emerged
as significant in shaping delegation decisions. Female participants demonstrated
a stronger reaction to algorithmic mistakes. This study offers insights for crafting
user-centric AI design to enhance cooperation and minimize aversion.

Keywords: Algorithm Aversion, human-computer interaction, decision behavior,
machine learning, causal inference
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1 Introduction

Driven by technological advancements, data availability, and computing power, intel-
ligent systems powered by Artificial Intelligence (AI) have become common in our
society, largely due to their transformative potential [1]. AI simulates human behaviors
like learning and decision-making [2]. AI’s ability to efficiently process vast amounts of
data, inform decisions, and automate processes has led to its widespread adoption [3].

However, technological shifts can lead to new social phenomena like algorithm
aversion, characterized by the reluctance to use algorithms in decision-making, despite
their superior ability to undertake certain tasks [4, 5]. The extensive body of literature
emerging in a relatively short period reveals an intricate mechanism with various
factors that can influence aversion or appreciation of algorithms, demonstrating the
complexity of achieving a common understanding of the underlying reasons for this
behavior.

As a consensus in the literature, context and personal elements significantly shape
an individual’s willingness or aversion to delegate decisions to an automated system.
Building on this concept, we explore these two impact dimensions in an experimental
study, applying a simplified multi-armed bandit problem. In the experiment, subjects
repeatedly choose from three options with hidden expected values, aiming to identify
the superior option. At each period, they can delegate decisions to a Reinforcement
Learning algorithm. For a holistic understanding of this behavior, this study delves
into the environmental dimension by investigating the impact of explainability, costs,
and full task automation. Concurrently, we assess the personal dimension by examin-
ing personality traits commonly associated with algorithm aversion, such as the big
five, locus of control, generalized trust, and demographic information. Despite grow-
ing awareness of algorithm aversion, there remains a need for more extensive research;
therefore, we focused on these psychological and contextual measures inspired by
suggestions and recommendations for further research in [6, 7]. This paper aims to
contribute to understanding how to design systems that enable fruitful interactions
between humans and computers.

Experimental evidence on algorithm aversion and appreciation varies significantly
across domains and contexts. Studies have found differing levels of human inter-
action with automated agents based on factors such as task context, performance
expectations, and agent roles [8]. Studies in financial and investment contexts high-
light reluctance to fully surrender decision-making authority to automated agents
despite their superior performance [9–11]. The presence of human errors and signifi-
cant decision outcomes seem to exacerbate algorithm aversion [4, 12]. Yet, showcasing
an AI-based system’s learning ability [13] or exerting time pressure can mitigate
this aversion [14]. Notably, the moral implications of decisions also play a role.
In morally-charged decisions, people often prefer the discretionary scope of human
decision-makers [15], and in situations where discrimination is possible, people prefer
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algorithmic evaluation [16]. However, there are instances of preference for algorithmic
over human advisory, influenced by factors such as how the expertise of the algorithm is
framed against a human [17–19]. In summary, experimental studies on human-machine
collaboration and algorithm aversion point to the complexity of these phenomena,
influenced by a range of factors from decision consequences and task complexity to
decision context framing and perceived algorithm expertise. For comprehensive and
interdisciplinary literature collections on algorithm aversion, systematic reviews are
provided in [20], [7], and [6].

Given the complexity of the phenomenon, we began our methodological approach
with statistical and regression analysis to understand treatment differences and explore
variable relationships. We then used machine learning and causal inference tech-
niques, including Logistic Regressions, Random Forest, Gradient Boosting Machines,
and Uplift Random Forest classifiers, to probe the nuanced nature of decision del-
egation behavior. Contextual factors like payment and automation notably affected
delegation, with payment reducing and full automation boosting its likelihood. Key
personal factors influencing delegation across models were age, extraversion, openness,
neuroticism, and locus of control. This paper documents the intricate relationships
between individual traits, contextual conditions, and delegation behavior, providing a
nuanced understanding of algorithm aversion within the boundaries of an experimental
construct.

2 Experimental Design

The experimental setting employed a between-subject design, utilizing a simplified
version of the multi-armed bandit problem [21]. Our design finds parallels in previ-
ous works, notably by [22], who also examined human interactions with bandit-based
decision-making scenarios. The primary task involved participants repeatedly choosing
one of three options labeled as ”products” over 40 periods. The experiment was con-
ducted online, where participants were instructed to select from three products, each
with distinct hidden quality levels that represented their expected values, translated
into the probability of receiving a payoff from the chosen option. The three variants
of quality were low (50% chance of payoff), medium (70% chance of payoff), and high
(90% chance of payoff). These probabilities were randomly assigned to products 1
to 3 at each participant’s onset and remained constant throughout the experiment.
Through repeated choices, the expected goal was for the participants to identify the
high-quality product that would maximize their total payoffs. After each selection,
participants received feedback on the outcome of their decision. In each round, par-
ticipants had the option to delegate the decision to an algorithm. After reading the
instructions, we asked participants about their perception of using algorithms for
decision-making in regular tasks. The responses were categorized as positive, neutral,
or negative. This response was used as a variable in the study, referred to as perception.

The basic framework described above is established as the ”baseline” treatment.
We further introduce three treatments with different contexts — Explanation, Pay-
ment, and Automation — to investigate the impact of explainability and transparency,
willingness to pay, and complete task automation on delegation behavior. We aim to
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better understand user preferences and friction points in algorithmic decision-making
by examining these factors. In all treatments, we employ an attention check in a given
round by displaying an animal picture below the task, which participants had to iden-
tify by the end of the task. Information about the design and the actual experiment
screens are documented in appendix D.

2.1 Explanation Treatment

As discussed in numerous studies, transparency and explainability are key factors
affecting the acceptance of algorithmic decision support. Algorithm complexity often
presents these tools as ”black boxes,” undermining their acceptance due to the lack
of understanding [23–28].

The inherent complexity in high-performing computational models poses a
dilemma between accuracy and transparency, as the intricacy of these models could
challenge the public’s comprehension [29–31]. This complexity underscores the ongoing
challenge practitioners face in maintaining explainability [32], necessitating accessi-
ble explanations irrespective of the chosen approach. Institutions and regulators also
emphasize the need for transparent algorithmic decisions [33].

We tested the information-sharing impact on delegation in this explanation treat-
ment, in which participants had access to a description of the algorithm used in the
product selection task. The description was supposed to be non-technical and to trans-
mit the essence of the method behind reinforcement learning to the subjects. In the
primary experiment page, the following text is displayed in a text box with a prominent
design: ”Reinforcement Learning: the algorithm calculates probabilities and chooses an
alternative based on the success of choices in previous rounds”. The description text
remained visible during the experiment.

2.2 Payment Treatment

Exploring the less examined aspect of financial incentives in algorithm aversion, people
might hesitate to pay for transparent AI if costs surpass perceived benefits [34]. During
crises, the appeal for robo-advisors—and hence the willingness to pay—escalates due
to the need for financial advice [35]. Similarly, radiologists are ready to pay for AI
tools that expedite diagnostics [36].

We investigate payment’s role in algorithm aversion by assigning a payment
requirement to algorithmic support, termed payment treatment. Here, participants
were informed that while they can delegate decisions to an algorithm, each delegation
carries a cost of 0.10 points (one-tenth of a point), aiming to introduce the psycholog-
ical aspect of payment in a way that participants easily understand. The goal was to
simply introduce payment as a contextual variable to gauge its impact, not to explore
the complexities of differential willingness to pay. The cost incurred for a decision
effectively restricts algorithm support to a pay-per-use basis. The points deduction
reduces the expected values of the products by the same amount, introducing a ”loss”
for rounds where payoffs do not materialize, as the amount is subtracted from the
participant’s total points.
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2.3 Automation Treatment

The task complexity may induce people towards higher acceptance of algorithmic
decisions [37]. [38] argue that from a human standpoint, full, compared to partial,
automation of decision-making processes can be very desirable in terms of efficiency,
such as improving productivity, and effectiveness, for better resource allocation. In
essence, the action of delegating the decision is already a form of automation, as the
algorithm calculates and selects the best option based on past data. We advance this
process by further automating it, thereby reducing the overall task burden. In this
way, one can analyze the subjects’ behavior toward the delegation of discrete decisions
compared to the delegation of the complete task.

In the automation treatment, the algorithm takes over the repetitive task of prod-
uct selection for 40 periods, easing the participants’ effort. Unlike previous treatments
requiring round-by-round delegation decisions, this feature allows continuous selec-
tion without active involvement. Participants could toggle automation on or off at any
stage. If they opted for delegation, they had a 5-second window to override the deci-
sion, redirecting them to the primary selection interface. Feedback remained available
post each round.

2.4 Personal Dimension

Algorithm aversion can be significantly impacted by personal factors such as psy-
chological aspects, personality traits, demographic features, and algorithm/task
familiarity [6]. For instance, individuals with an internal locus of control tend to resist
human and AI suggestions [39], and neuroticism correlates with lower trust ratings.
Delegation to algorithms increases when information scarcity is present and among
extroverted individuals [40]. Trust in algorithms is not static but can evolve with per-
sonal experiences [41], which similarly impacts attitudes toward autonomous transport
[42].

Broadening our research to encompass both contextual and personal aspects of
algorithm aversion, we incorporate demographic data, the Big Five Personality traits,
Locus of Control, and trust levels into our analysis. The Big Five Personality Traits
offer an encompassing view of human personality [43], while Locus of Control illus-
trates an individual’s belief in their power over life events [44]. Generalized trust
signifies an individual’s confidence in the reliability and benevolence of others [45].
After completing the selection task, participants proceeded to this series of personality
questionnaires, which also included control questions (see appendix D).

3 The Algorithm: Reinforcement Learning
Implementation Framework

The term ”algorithm” has various definitions across different fields. Computer science
typically defines it as a step-by-step procedure or set of rules used to perform tasks
[46]. In the context of algorithm aversion, it often refers to decision-making tools that
assist humans in making choices or predictions [4].

5



A variety of algorithms could be applied to the task of repeatedly selecting alter-
natives that maximize one’s payoffs. In our design, we aimed to allow participants to
observe the algorithm’s training and improvement process throughout the task while
keeping it simple enough for participants in the explanation treatment to understand
its core mechanism in just a sentence or two. As a result, we chose the Reinforcement
Learning (RL) model, a class of solution methods well-suited for learning-based and
sequential problems.

Reinforcement learning is typically framed as an optimization problem, with the
goal of identifying optimal actions based on defined criteria [47]. The model’s frame-
work is designed to map situations to actions in a way that maximizes rewards, as
defined by [48]. Key components of reinforcement-based models include a set of choices
or actions, a mechanism for receiving feedback associated with each choice, an updat-
ing rule that adjusts previous beliefs or estimates of each choice’s expected value based
on the feedback, and a decision rule that determines the probability of selecting each
choice based on current beliefs. Our model is based on [49] ’s implementation, which
incorporates the concept of attractions, or weights attached to strategies that rep-
resent the perceived value associated with specific choices [50]. Our implementation
assigns an attraction value to each product, which is updated after a decision is made
using a learning rule. The attractions are transformed into probabilities of choice using
a softmax function. A formalization of the algorithm is presented in appendix A.

The embedding of this algorithm in the experiment generates one instance of rein-
forcement learning for each participant, which starts with no pre-training or bias. The
attraction values are initialized at 0, and the algorithm learns from participant choices
and its own choices over time, making the learning process for humans and algorithms
comparable.

4 Results

In this section, we conduct a comprehensive six-stage analysis of decision delegation to
an algorithm, exploring its contextual, behavioral, and personal dimensions. We begin
with an overview of our sample information and attention analysis, followed by an
examination of delegation behavior across different treatments. We then use regression
methods to identify significant predictors of delegation behavior and machine learning
methods for a nuanced understanding of algorithm aversion. We incorporate causal
inference methods to clarify causal relationships, analyze participants’ reactions to
algorithmic failures, and measure the algorithm’s performance under varying condi-
tions. This multifaceted approach provides a detailed understanding of the complex
phenomenon of algorithm aversion1.

4.1 Sample Information and Attention Analysis

A total of 358 participants took part in our online experiment. Subjects were evenly
distributed across the four treatments, with approximately 89 to 91 participants per
treatment. On average, the experiment took 11 minutes to complete, and participants
earned between 4 and 10 euros, with an average of 6.13 euros. Demographically, the

1This research project was pre-registered in AsPredicted.org, with the ID 119401.
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sample was 52.7% female. Participants were primarily from Germany (51%), with the
remaining individuals representing various nationalities. Most participants (73.2%)
were from the Rhine-Waal University of Applied Sciences, while 26.8% were from
Heidelberg University (both in Germany), aged between 18 and 47 years old; the
mean age was 25. Among the subjects, 19% were economics students; the rest were
from various other academic disciplines, of which 21% came from STEM majors. The
self-reported perception values were 46.6% positive, 43.9% neutral, and 9.5% negative.

We analyzed participants’ attention, particularly focusing on the automation treat-
ment, to determine if active supervision of the algorithms’ decisions persisted in a
fully automated task. To measure this, we calculated the total time the web page was
active in the subjects’ browsers. Additionally, we implemented attention-check ques-
tions in both the experimental task and the personality questionnaires. The results
are summarized in the table 1; these values do not account for the first round, which
includes the time of reading the instructions.

Table 1 Attention metrics for all treatments

Treatment Average Active Time (s) Animal Question (frequency correct)

Baseline 9.6 0.88
Explanation 10.3 0.89
Payment 9.0 0.85
Automation 11.2 0.55

The active time analysis showed consistent results across all treatments, with
participants spending an average of 9 to 11 seconds per round. A second attention
check involved identifying an animal that appeared during the final rounds, reveal-
ing decreased attention in the automated treatment. Even though the screen was
active, fewer people in the automated treatment seemed to monitor the task closely.
We included an attention self-report question in the automated treatment especially
asking if the subject had supervised the algorithm’s decisions during the task. 76%
of them answered yes, which deviates from the 55% of participants that got the ani-
mal question correct. 15% answered no, and 9% answered not applicable. The delta
suggests an overreporting of the attention and supervision levels in the automated
treatment. Four control questions were embedded in the personality tests, with 78%
of participants answering all four correctly and 93% answering at least three correctly,
indicating attentive reading.

4.2 Delegation Behavior and Treatment Effects

We measured the frequency of delegating decisions to the algorithm in each treatment.
The absolute frequency of delegation in each treatment is documented in table 2.

In the baseline treatment, we observed a balanced split, where about half of the
decisions were delegated across participants and rounds. The information shared in
the explanation treatment only slightly increased the number of delegation decisions.
The introduction of payment sharply decreases, and the possibility for automation
increases the willingness to allow the algorithm to decide.
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Table 2 Absolute frequencies of
delegation across the four treatments

Treatment Frequency of Delegation

Baseline 53.02%
Explanation 58.37%
Payment 27.87%
Automation 66.07%

Fig. 1 Mean Frequencies of Delegation Over Time

Figure 1 displays the overall delegation frequencies over time, where the distri-
butions are consistent across treatments and relatively constant, without any large
variations in the decision behavior between rounds. We aggregated the experimen-
tal data on a participant level to test these findings for statistical significance. Each
participant’s cumulative delegation frequency over 40 periods is treated as an inde-
pendent observation. The distributions of these relative frequencies of delegation are
displayed in the histogram in figure 2.

Fig. 2 Histogram of Participants Cumulative Delegation Frequencies

As anticipated, the highest delegation frequencies occur in automation and the
lowest in payment treatments. The baseline and explanation treatments exhibit a more
even distribution of subjects’ delegation behavior. We employed a Kruskal-Wallis test
[51], a non-parametric statistical test comparing the medians of several independent
samples. With a test statistic of 52.67 and a p-value < 0.001, the results indicate a
significant difference between the medians of the four independent treatment samples.
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While the Kruskal-Wallis test reveals significant differences, it does not pro-
vide detailed insights into these differences between the samples. Consequently, we
employed a Dunn posthoc test [52] to identify significant pairwise differences between
samples. The p-values for these comparisons are in table 3.

Table 3 Dunn posthoc test results, p-values for pairwise treatment
comparisons

Baseline Explanation Payment Automation

Baseline 1 0.373 <0.001 0.009
Explanation 0.373 1 <0.001 0.090
Payment <0.001 <0.001 1 <0.001
Automation 0.009 0.090 <0.001 1

In summary, these results suggest significant differences between the medians of
baseline, payment, and automation, as well as between explanation and payment.
There is no significant difference between the medians of baseline and explanation or
between explanation and automation. The payment feature was the most influential
regarding the willingness to delegate.

The contextual findings highlight the influence of different treatment conditions
on the delegation behavior of participants. The baseline and explanation treatments
led to a more even distribution of delegation behavior. On the other hand, the pay-
ment treatment had a considerable negative impact on the willingness to delegate.
The automation treatment led to the highest frequency of delegation among the four
treatments, demonstrating the importance of reducing the involved workload in a
task in encouraging algorithm-based decision-making. Overall, these results underscore
the significance of understanding and addressing the factors that affect delegation
behavior to design more effective human-algorithm collaborations and decision-making
processes.

4.3 Incorporating the Personal Dimension - Regression
Analysis

The design of our treatments provides insights into how exogenous factors influence
delegation behavior. However, individual factors also play a significant role in algo-
rithm aversion, as widely discussed in the literature. In this section, we examine the
binary action of delegating a decision in relation to treatment conditions and personal
factors, including personality test scores, gender, education, and self-reported percep-
tion (as explained in chapter 2). Categorical values were encoded as binary dummy
variables.

Although correlations between the variables under investigation and delegation are
primarily weak, they are highly significant (full correlation results are reported in B1,
appendix B). To further explore and quantify these relationships, we constructed a
logistic regression model including demographic and personal information as indepen-
dent variables. The model results are summarized in table 4. A critical remark in the
regression modeling is that we use the entire experiment’s dataset: every decision from
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each participant at each round. Due to repeated choices made by the same individu-
als across 40 periods, we clustered the standard errors on the participant level. This
approach accounts for intra-participant correlation, considering potential influences
from unobserved individual factors or shared experiences, as per [53] ’s reasoning.

Table 4 Logistic Regression Results - Delegation

Variable Coefficient Standard Error p-value

Constant -0.525 1.013 0.605
Explanation 0.252 0.207 0.223
Payment -1.012 0.235 ∗∗∗ < 0.001
Automation 0.515 0.234 ∗0.027
Female -0.144 0.179 0.421
Age -0.009 0.018 0.596
STEM 0.267 0.227 0.238
Business & Economics -0.181 0.201 0.37
Extraversion 0.04 0.059 0.497
Agreeableness 0.036 0.073 0.627
Conscientiousness 0.137 0.085 0.106
Neuroticism -0.047 0.072 0.513
Openness -0.008 0.087 0.926
Internal LoC 0.057 0.102 0.578
External LoC 0.054 0.106 0.614
Generalized Trust 0.067 0.066 0.307
Perception -0.368 0.14 ∗∗0.009

Significance levels: ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05.

The logistic regression model provides several insights into the effects of treatments
and personality traits on delegation and also reinforces the findings in chapter 4.2. Ini-
tially, the automation treatment exhibits a positive and statistically significant impact
on delegation (p = 0.027), suggesting that automating tasks encourages individuals
to delegate. Conversely, the payment treatment displays a negative and statistically
significant influence (p < 0.001), implying that requiring payment could discourage
delegation. The explanation treatment, although positive, is not statistically signifi-
cant (p = 0.223). Regarding personal variables, the only statistically significant effects
are observed for perception (p = 0.009), which negatively impacts delegation, sug-
gesting that an increase in negative perception about algorithms is correlated with a
lower likelihood of delegation. Other variables, including gender, age, field of study,
and personality traits, do not exhibit statistically significant effects on delegation in
this model. A second regression model, including interaction terms, is reported in
appendix B, in which payment loses its significance, and Internal Locus of Control
becomes significant. Quantile regression models applied to cumulative delegation fre-
quencies (shown in figure 2) showed similar significance and coefficients to logistic
regression, despite a marginally better fit. See appendix B for full details.

In conclusion, examining personality traits and algorithm aversion uncovers the
influence of individual factors and treatment conditions on delegation behavior. A crit-
ical insight from this analysis is the existence of intricate relationships between various
traits. Interaction terms offer a more comprehensive understanding of the relationships
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between variables and delegation behavior by accounting for the dependence of some
variables’ effects on the values of other variables. Gaining insights into these relation-
ships can aid in comprehending how diverse behavioral profiles respond to algorithmic
systems.

4.4 Machine Learning for Delegation Behavior Analysis and
Causal Inference

To understand whether the personal and contextual pieces of information are help-
ful in predicting the delegation behavior in such a case, we tested a few prediction
techniques using the same variables scheme, that is, predicting the binary outcome of
the delegation decision possibility using the treatments, personality, and demographic
data.

[54] highlights the benefits of applying machine learning to model behavior, empha-
sizing its potential for improved predictive accuracy, handling large datasets, capturing
non-linear relationships, and adaptability. Additionally, machine learning enables
personalization and fosters cross-disciplinary insights, contributing to a better under-
standing of human decision-making and facilitating more effective interventions across
various domains.

The logistic regression model, as detailed in chapter 4.3, offers limited insights
into the complex interplay of our variables, accounting for only about 9% (pseudo
R-squared) of the variation in delegation decisions. Given the absence of clear linear
relationships and the complexity of the data, we turn to more sophisticated methods.
We employ machine-learning models to examine the overall impact of variables on pre-
dicting delegation, followed by causal machine learning models to separate treatment
effects from the personal covariates. In the subsequent models, we refer to within-
sample predictions, using 80% of the sample for model training and the other 20% to
generate and test predictions. Methodological formalizations for the adopted methods
can be found in appendix A, and technical model implementation remarks in appendix
C.

4.4.1 Predicting Delegation Behavior

If we use our logistic regression coefficients to generate predictions, the model yields
an accuracy score of 0.62, meaning 62% of the delegation decisions were classified
correctly, not far from a random baseline. This relatively low accuracy might be due
to several factors influencing the results that have yet to be accounted for or the
failure of the model to capture complex relationships between the variables. To deepen
the understanding of these variables’ relationships and the possibility of generating
predictions for algorithm aversion behavior using contextual and personal information,
we resort to the machine learning techniques Random Forest and Gradient Boosting
Machines.

Research shows successful predictions of behavioral elements using personality
traits, characteristics, and environmental data. [55] used psychometric test data,
including Big 5 and Dark Triad, and Twitter features to predict cyberbullying accu-
rately. [56] employed machine learning to predict mental health status based on
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social media and personality data. Similarly, [57] used personality traits to predict
smartphone usage behavior. [58] combined reaction time, psychological attributes,
and personality traits to predict Loss Aversion Bias, supporting Kahneman’s ”Think-
ing Fast and Slow” theory [59]. These studies demonstrate the potential of machine
learning models in similar prediction tasks.

[60] introduced the Random Forest model, an ensemble learning method designed
for classification and regression problems. The algorithm works by creating multiple
decision trees, each of which ’votes’ on an answer. In a classification problem such as
ours, the Random Forest chooses the class that gets the most votes from all the trees.
The key idea behind Random Forest is to create a ”forest” of diverse decision trees
constructed from random subsets of training data and features. This approach helps
increase the model’s robustness, reduce overfitting, and improve overall predictive
accuracy. The Random Forest algorithm is particularly useful for binary classification
problems because it can handle non-linear relationships between the input features
and the output variable. It can also handle missing values and outliers in the input
data and estimate the importance of each input feature in the prediction [61].

In a similar manner, Gradient Boosting Machines (GBMs) are a class of ensem-
ble learning algorithms that build a robust model by iteratively adding weak learners,
typically decision trees, to minimize a loss function. The algorithm focuses on correct-
ing the errors of the previous tree by training on the residuals, effectively improving
the overall model’s performance, as defined in [62].

As per definitions in [60] and [62], Random Forest and GBMs are ensemble learning
methods for similar purposes. The main difference lies in their approach to building
the ensemble of decision trees. Random Forest constructs multiple trees independently
and in parallel, combining their predictions through averaging or majority voting.
It uses bagging (Bootstrap Aggregating) to create diverse trees by resampling the
dataset with replacement. In contrast, GBM constructs trees sequentially, with each
new tree trying to correct the errors made by the previous tree. It utilizes a technique
called boosting, where trees are combined through a weighted majority vote, and the
weights are determined by minimizing a loss function during the training process.
We apply both methods for comparable results but with distinct processes, enabling
comparing and validating the findings from the generated predictions to assess our
findings’ consistency. In each model, feature importances highlight the significance of
each feature in predicting the target variable. Figure 3 presents an overview of the
feature importances.

Both models have been cross-validated during parameter fitting and training using
the KFold method to avoid overfitting (details in appendix C). In this process, we
split the training data into a number of subsets or ”folds.” We train the model on
the remaining data for each fold and test it on this fold. This process is repeated
for each fold, allowing us to assess the model’s performance based on its ability to
predict new data [63, 64]. Furthermore, with an equivalent objective as clustering the
regression errors on a participant level (chapter 4.3), we aggregated the participant
observations here using the GroupKFold variant, which ensures instances from the
same participant either in the training set or the test set. This approach safeguards
against data leakage and maintains a realistic estimate of the model’s performance,
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especially when observations within the same group (in this case, participant) are
correlated.

Fig. 3 Machine Learning Models Feature Importances

According to the Random Forest and Gradient Boosting Machine models, the
decision to delegate to algorithms is influenced by a complex mix of individual char-
acteristics and contextual factors. Age consistently emerges as the most significant
variable in both models, reflecting its significant role in shaping comfort with algorith-
mic delegation. Similarly, Neuroticism and Extraversion — two Big Five personality
traits — feature prominently, signifying their impact on delegation tendencies.

Apart from these, the Locus of Control, both internal and external, appears to
influence delegation decisions, although they are more pronounced in the Random
Forest model. Contextual factors, like payment and automation, also emerge as crucial
determinants across both models. Intriguingly, automation is more influential in the
GBM model, suggesting a more substantial bias towards delegation in fully automated
scenarios. Gender, education, and the Explanation context appear to have minimal
impact in both models.

These findings underscore the intricate dynamics governing decision delegation,
with no single factor having a dominating influence. Instead, a nuanced interplay of
various individual and contextual elements appears to guide the decision to delegate
to algorithms.

We evaluated the Logistic Regression (LR), Random Forest (RF), and Gradient
Boosting Machine (GBM) models using four metrics: Accuracy, Precision, Recall, and
F1 score. Accuracy calculates the proportion of correctly classified instances. Precision
quantifies how well the model correctly identifies positive instances. Recall gauges the
model’s ability to detect positive instances among actual positives. The F1 score, a
blend of precision and recall, is the harmonic mean of these two metrics [65, 66]. As
summarized in Table 5, both RF and GBM outperformed LR in predictive power, with
RF achieving slightly superior performance across all metrics. This outcome highlights
the efficacy of tree-based models for our classification problem.

In addition, a Receiver Operating Characteristic (ROC) curve provides a graphical
representation of a classifier’s performance across varying decision thresholds (figure
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Table 5 Prediction Performance metrics

LR RF GBM

Accuracy 0.6210 0.8332 0.8325
Precision 0.6112 0.8185 0.8120
Recall 0.7018 0.8730 0.8730
F1-score 0.6534 0.8414 0.8415

4). The Area Under the ROC Curve (AUC-ROC) measures the overall performance
of a binary classifier. It ranges from 0 to 1, with higher values indicating better per-
formance. A value of 0.5 indicates a random classifier (dashed line), and 1 indicates
a perfect classifier. The ROC area quantifies how well the classifier can distinguish
between the positive and negative classes, regardless of the choice of classification
threshold [67, 68]. In the overall analysis, and in line with previous performance met-
rics, the LR model is surpassed by the other models, with the RF model showing a
slight edge. The high scores achieved by both the RF and GBM models affirm their
ability to explain the data, enhancing the reliability of the interpretations documented
in our study.

Fig. 4 ROC Curves for All Models

Although logistic regression provided valuable insights into the direction and sig-
nificance of individual variables, its ability to handle the complex data relationships in
our study was limited. We explored machine learning techniques to capture these rela-
tionships better, specifically Random Forest and Gradient Boosting Machines. Both
models significantly outperformed logistic regression regarding accuracy, precision,
recall, and F1 score, with the Random Forest model having a slight edge in accu-
racy over the GBM. Both models consistently highlighted the same features, such as
payment, extraversion, and neuroticism, as key influencers in delegation decisions.

4.4.2 Causal Inference and Heterogeneous Treatment Effects -
Uplift Random Forest

To further understand the factors influencing decision delegation to algorithms, we
now focus on disentangling the effects of the treatment conditions from personal data.
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While regression and machine learning models have provided insights, they combine all
variables, not distinguishing between treatment conditions and personal characteristics
effects. Hence, we use causal inference to uncover how treatment effects vary across
different subgroups within our sample, focusing on estimating the expected change
in the outcome as a result of the intervention. This approach allows us to measure
heterogeneous treatment effects and identify the subset of individuals most influenced
by the treatment conditions, given their characteristics. To this end, we resort to Uplift
Modeling.

Uplift Modeling, a branch of causal inference, models the impact of incremental
treatment effects on individuals’ behavior [69]. Early applications of similar methods
can be seen in [70]. For a comprehensive definition and literature review on machine
learning problems and applications, see [69, 71].

We employ the Uplift Random Forest Algorithm, an ensemble learning method
that uses the random forest algorithm to estimate the causal effect of a treatment or
intervention on individual outcomes [72, 73]. The uplift random forest classifier [74]
incorporates the treatment indicator as a covariate to capture differential effects and
uses other covariates to estimate individual treatment effects. The model is tuned using
the same cross-validation technique described in 4.4.1, with details in appendix C.

Treatment effects can be evaluated at an individual level by computing uplift
scores. These scores represent the predicted likelihood of delegation for each obser-
vation under each treatment scenario, essentially providing a probabilistic estimate
of how a participant would behave if they were subjected to a specific treatment.
The distributions of these predicted likelihoods are plotted in figure 5. The trend
observed in this analysis follows the initial assessment of the treatment effects (chapter
4.2) in reference to the baseline. Payment negatively impacts the likelihood of dele-
gation, whereas explanation has a slight positive effect, and automation has a more
pronounced positive effect. Each treatment’s computed average treatment effects are
payment = −0.26, explanation = 0.05, and automation = 0.12.

Fig. 5 Distribution of Predicted Treatment Effects (Uplifts)

Feature importance can also be extracted from this model, with a slightly different
meaning. Unlike traditional classification models, in Uplift models, feature importance
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does not directly equate to the effect of a feature on the outcome but rather its
influence on the treatment effects. In other words, an essential feature in the model
translates to the influence on the change in the likelihood of delegation mediated by
the treatment. These values are presented in figure 6.

Fig. 6 Feature Importances - Causal Model

In the Uplift Random Forest model, Age, Openness, External Locus of Control,
Extraversion, and Agreeableness significantly influence the treatment effectiveness on
delegation behavior. Other variables like Internal Locus of Control and Conscientious-
ness also play a role, but their influence is moderate. On the other hand, Gender,
Perception, and Education have the least effect on treatment assignment.

Contrasting with the Random Forest and Gradient Boosting Machine models, the
Uplift model emphasizes the impact of these variables on the treatment effects rather
than the outcome itself. While age and certain personality traits like Extraversion and
Openness are influential across all models, the Uplift model uniquely demonstrates
their role in optimizing treatments for delegation.

Evaluating causal inference models, like uplift random forests, is intricate due to
counterfactual outcomes. We can only observe a given individual’s delegation deci-
sion under one treatment. Unlike traditional classification, where predicted outcomes
are compared to observed labels (as in table 5), uplift modeling predicts the differ-
ence between observed and unobserved counterfactual outcomes. This lack of observed
outcomes for both scenarios for an individual restricts using standard classification
metrics. Instead, metrics specific to uplift models, such as uplift curves, assess their
performance. The uplift curve, similar in interpretation to the ROC curve, plots cumu-
lative gain from targeting individuals by predicted uplift. Derived from it, the Area
Under the Uplift Curve (AUUC) mirrors the AUC-ROC, gauging the model’s ability
to prioritize effective interventions. Figure 7 shows our model’s Uplift Curve.

We have computed the AUUC using a synthetic control group consisting of individ-
uals whose predicted optimal treatment matches the actual treatment they received
or those in the actual control group, following the method in [75]. The uplift score for
each individual in the synthetic control was computed, and individuals were ranked
based on these scores. The AUUC was then calculated as the area under the curve
plotting the cumulative proportion of actual outcomes against the proportion of the
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Fig. 7 Uplift Curve

population targeted. The result is 0.977, which indicates relatively high performance
in the prediction task and in explanation power.

Applying Uplift Random Forest to our study has offered valuable insights into the
factors that influence the impact of treatments in delegation decisions. The model
identified age, openness, and certain personality traits as significant determinants. It
provided an additional perspective by focusing on the influence of these variables on
treatment effectiveness rather than on the outcome itself.

4.5 How Subjects React to Non-Profitable Algorithmic
Decisions

Numerous studies show that people initially trust algorithms, but trust may plummet
after a mistake occurs [76]. [4] found that people avoid algorithms or computerized
decision-making systems even if they make fewer errors than humans due to high
expectations for algorithms and attributing errors solely to the algorithm. [77] showed
that people are less likely to follow advice from a computer algorithm immediately
after receiving incorrect advice. Complementarily, [78] reveals that poor algorithmic
performance harms human confidence in the algorithm and self-confidence. [37] com-
plements the idea of adverse reactions by outlining that bad decisions generated by
algorithms are more severely punished than those of humans. To investigate this fur-
ther, we analyzed participants’ reactions after delegating a decision to the algorithm
and receiving no payoff.

Delving into the impact of the algorithms’ performance on the subjects, we calcu-
lated the frequency of participants changing their strategies from ”delegate” to ”not
delegate” relative to the number of times the algorithm’s decision resulted in a zero
payoff, which does not necessarily mean a ”wrong” choice but can also indicate a
non-realized payoff from the ”correct” choice. We extended this analysis to explore
potential gender effects. Table 6 presents the absolute proportions of reaction results
categorized by gender and treatment.

On average, participants in the payment treatment group exhibited the highest
reaction frequency (0.35), suggesting that individuals are more likely to change their
decision when a financial incentive is involved. Conversely, the automation treatment
group had the lowest frequency of reaction (0.09), indicating that participants are
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Table 6 Relative frequencies of changing strategies (reaction) following
algorithmic failures

Baseline Explanation Payment Automation
General (aggregated) 0.30 0.25 0.35 0.09
Males 0.26 0.15 0.27 0.07
Females 0.34 0.31 0.40 0.10

less likely to change their decision when the task is automated, possibly due to the
complete handover process or also satisfaction with the algorithm performance, which
was overall higher in the automation treatment (further details on the algorithm’s
performance are documented in chapter 4.6).

Fig. 8 Frequencies of reaction to algorithmic failures by treatment and gender

Comparing reaction frequencies between males and females reveals that females
have a higher reaction frequency across all treatments, suggesting they might be more
sensitive to algorithm mistakes (figure 8). To further examine the gender gap in reac-
tion, given that gender differences were not observed elsewhere in the experiment, we
conducted statistical tests on both samples.

Similar to the statistical tests performed on the relative frequencies of delegation,
we calculated the relative frequencies of reaction for each participant over 40 periods,
treating each participant’s decision path as an independent observation and separating
the samples by gender. We then applied a Mann-Whitney U test [79] to measure the
difference between the two independent samples. The results show a value of 7751.51
and a p-value of 0.0028, outlining a statistically significant difference between the
means of the frequency of strategy reactions for males and females. To deepen our
understanding of participant reactions, we further analyzed whether contextual or
personal factors influenced their behavior. Similar to the methodology used in the
delegation behavior analysis (Chapter 4.3), we employed a logistic regression with
standard errors clustered at the participant level. The results of this analysis are
compiled in Table 7.

The analysis indicates that task automation, gender, and internal locus of control
are key factors in strategy changes following unprofitable algorithm decisions. Full task
automation and a high internal locus of control reduce the likelihood of strategy shifts,
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Table 7 Logistic Regression Results - Reactions

Variable Coefficient Standard Error p-value

Constant -2.188 0.868 ∗0.012
Explanation -0.088 0.181 0.626
Payment -0.32 0.214 0.134
Automation -1.042 0.24 ∗∗∗ < 0.001
Female 0.453 0.154 ∗∗0.003
Age 0.005 0.016 0.775
STEM -0.345 0.213 0.106
Business & Economics 0.021 0.182 0.908
Extraversion 0.031 0.053 0.567
Agreeableness 0.121 0.081 0.138
Conscientiousness 0.027 0.082 0.743
Neuroticism -0.044 0.061 0.465
Openness 0.04 0.09 0.657
Internal LoC -0.292 0.087 ∗∗∗ < 0.001
External LoC -0.107 0.104 0.304
Generalized Trust -0.034 0.07 0.63
Perception -0.229 0.122 0.06

Significance levels: ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05.

suggesting trust in the process and personal control beliefs. Conversely, female partic-
ipants are more prone to strategy changes, hinting at potential gender differences in
reactions to algorithmic failures. Other factors, including algorithm explanation, pay-
ment requirement, and various personality traits, don’t significantly influence strategy
changes, suggesting their impact may be less direct.

4.6 Task Performance and Human-Algorithm Interaction

Finally, to evaluate the performance of Reinforcement Learning in the product selec-
tion task, we analyzed the mean probabilities of selecting each product quality level,
grouping them based on their probabilities of receiving a payoff. The task was not
straightforward due to the possibility of receiving a zero payoff even after identifying
the best option, which could alter the weight of correct attractions. This ambigu-
ity challenged human subjects and affected the algorithms’ convergence capabilities.
Figure 9 illustrates the development of choice probabilities for each product type.

Fig. 9 RL Choice Probabilities Over Time
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In all instances, the algorithm could identify the highest quality product compared
to the inferior alternatives. However, performance levels varied across treatments. We
observed improved performance in generating optimal choice probabilities in treat-
ments with higher delegation rates, such as explanation and automation, compared
to the other groups, with the payment group being the most impacted. In treat-
ments where participants exhibited higher ”trust” in the algorithmic decision-making
process, the performance in identifying the optimal product was better.

Table 8 Frequency ”high” Product
Selected

Algorithm Human

Baseline 0.592 0.511
Explanation 0.634 0.495
Payment 0.506 0.505
Automation 0.694 0.515

In a complementary analysis, table 8 compares performance between the algorithm
and human subjects throughout the task. The values denote the success frequen-
cies, normalized by the number of human or algorithm decisions. As expected, even
with a non-trained algorithm that learned on the spot, the algorithm consistently
outperformed the human subjects.

5 Conclusion and Discussion

This paper investigated the impact of framing conditions, explainability, willingness
to pay, and complete task automation on delegation behavior in the context of algo-
rithmic decision-making. Additionally, the study explored individual differences by
examining the Big Five Personality Traits, Locus of Control, Generalized Trust, and
other individual characteristics such as gender, age, and education.

We investigated the algorithm aversion phenomenon employing a multi-stage anal-
ysis covering hypotheses testing, regressions, machine learning, and causal inference
models. Our findings revealed that context conditions significantly influenced partici-
pants’ delegation choices. The study demonstrated that explaining the algorithm used
in the product selection task improved user trust and increased the likelihood of del-
egation. In contrast, introducing a cost for delegation (Payment treatment) led to a
decrease in delegation rates. Finally, the Automation treatment highlighted that par-
ticipants were likelier to delegate decisions to the algorithm when the task was wholly
automated.

In the machine learning application, we adopted a two-pronged approach to deci-
pher the complex dynamics of decision delegation. We utilized traditional machine
learning models — Random Forest and Gradient Boosting Machines — and an Uplift
Random Forest model, providing complementary perspectives on the influences on del-
egation behavior. The Random Forest and Gradient Boosting Machine models offered
insights into the direct impacts of individual and contextual variables on delega-
tion decisions. Age, personality traits like Neuroticism and Extraversion, and factors

20



like Payment and Perception consistently emerged as significant influences. These
models underscored the intricate interplay of individual traits and contextual con-
ditions, with no single factor dominating the decision to delegate. Complementing
this, our Uplift Random Forest model provided direct heterogeneous treatment effects,
which confirmed the impacts observed in the statistical analysis: the strong negative
influence from the payment context and the moderately strong positive influence of
automation. As for the impact of personal variables, this focused on their influence
on quantifying the likelihood of delegation. Key variables such as Age, Openness, and
certain personality traits significantly shaped the uplifts in treatment assignments.
The model highlighted the importance of these factors in optimizing interventions to
enhance delegation, adding a unique dimension to our understanding. The machine
learning analysis revealed a nuanced understanding of how individual characteris-
tics and contextual factors, alongside their interplay, shape decision delegation to
algorithms. The machine learning models identified a set of influential factors with
high predictive accuracy, while the Uplift model shed light on optimizing intervention
impacts. This complexity and interconnectedness of personal and contextual factors
was also reported by [80]. These insights provide valuable guidance for practition-
ers designing algorithmic decision systems, emphasizing the need for a personalized,
context-sensitive approach.

In examining responses to algorithmic errors, we discovered pronounced reactions
in scenarios involving payment treatments. Interestingly, these reactions were sig-
nificantly more frequent among females, indicating the presence of gender effects.
Confirmatory statistical analyses reinforced these observations, revealing that factors
such as Automation, Payment, and Internal Locus of Control significantly influenced
participants’ responses to algorithmic mistakes. These findings highlight the influence
of both gender and specific situational contexts and confirm previous experiments in
the literature pointing to algorithmic failures as a driver of aversion.

Employing a non-biased algorithm and allowing it to learn exclusively from the
interaction with participants allowed us to observe how the algorithm’s learning pro-
cess evolved alongside the participants’ decision-making behavior. In particular, treat-
ments with lower delegation rates negatively affected the algorithm’s performance,
generating sub-optimal choice probabilities.

The implications of these findings are manifold. By better understanding the fac-
tors influencing delegation behavior in algorithmic decision-making, we can develop
more user-friendly systems that facilitate trust and encourage appropriate delegation.
These insights can contribute to designing decision support tools tailored to individual
preferences and optimize human-algorithm collaboration.

This study has several limitations, including the simplicity of the experimental
design, which may not fully capture the complexity of real-world decision-making
scenarios, and a potentially non-representative sample. The interconnectedness and
multicollinearity of personal traits also present challenges in isolating and interpreting
their individual effects on delegation behavior. Further research could employ more
realistic product designs and decision-making tasks and investigate the effects of com-
bined treatment conditions, e.g., payment and automation, payment and explanation,
among other things, to understand better the interplay between various contextual
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factors and their impact on delegation behavior in algorithmic decision-making. More-
over, future studies could also consider evaluating purely economic behaviors and
attitudes, such as risk, loss, and ambiguity aversion.

In conclusion, this paper contributes to the growing literature on algorithm aver-
sion and delegation behavior. It highlights the importance of framing conditions,
explainability, individual differences, and the complex interaction between variables
in shaping user preferences and trust in algorithmic decision-making systems. Future
research could delve deeper into the interaction between these factors and explore the
impact of different explanation styles, varying costs for delegation, and other contex-
tual factors on delegation behavior. By understanding the nuances of human-algorithm
collaboration, we can develop systems that enhance decision-making and contribute
to more efficient and effective outcomes in various domains.
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Appendix A Methodological Formalizations

This chapter provides an overview of the machine learning methods used in the
project. The following subchapters account for the Random Forest, Gradient Boost-
ing, and Uplift Random Forest methods, providing generalizations of the algorithms’
implementations.

A.1 Reinforcement Learning Implementation and Tuning

The underlying problem introduces three options or products, expressed as Qi, each
associated with distinct probabilities of receiving a payoff that can be selected at each
period, t. Each product Qi is associated with an attraction value AQi

(t), representing
the decision weight attached to product Qi at period t. Following the theoretical
frameworks in [49, 50], the attraction values are updated based on the payoffs received
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by selecting product Qi using the following update rule:

AQi(t) = ϕAQi(t− 1) + I(Q(t) = Qi)πQi(t) (A1)

This model features the indicator function, which means that a player’s attrac-
tion to a strategy can only increase if they choose it. The attraction increases by
the amount of payoff received from it. In the update rule, the indicator functions
I(Q(t) = Qi) equals 1 if a participant chooses product Qi at period t and 0 otherwise,
while πQi

(t) represents the payoff received when choosing product Qi at period t. The
recency parameter ϕ indicates how quickly past payoffs are forgotten, which acts as
a form of learning rate. Attractions from the previous period determine choice prob-
abilities in any period. A logistic transformation over the attraction values calculates
the probabilities:

PQi(t + 1) =
eλAQi

(t)∑m
k=1 e

λAQk
(t)

(A2)

In this equation, PQi(t + 1) represents the probability of selecting product Qi at
time t+ 1, AQi(t) denotes the attraction of product Qi at time t, and m indicates the
number of available product options. The second parameter, λ, reflects the sensitivity
of choice probabilities to differences in attractions. The two necessary parameters were
tuned using observed data from 1000 simulations, testing for the ranges 0 − 1 for ϕ
and 0− 10 for λ. The tuning resulted in ϕ = 0.47 and λ = 4.5, associated with higher
payoffs. The experiment parameters were set to these values statically.

A.2 Random Forest

The Random Forest algorithm concept builds a large collection of de-correlated deci-
sion trees and then aggregates them through a majority voting system for classification
problems. [81] generalized the algorithm as follows:

More details on the Random Forest algorithm can be found in [60].

A.3 Gradient Boosting Machines

Gradient Boosting Machines (GBM) is a machine learning method that builds a
sequence of decision trees, each correcting its predecessor’s mistakes, to create a final,
robust predictive model [62]. [81] also provides a generalization of this model, with
the stepwise algorithm defined as:

Lines 2-6 are repeated K times at each iteration m, once for each class. For a more
detailed description of the Gradient Boosting Machines and their derivations, see the
comprehensive overview in [81].

A.4 Uplift Modelling

The underlying method is the same as that of the Random Forest. However, For the
uplift random forest classifier, the uplift tree consists of a combination of methods
based on uplift modeling, with the tree split criterion based on differences in the
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Algorithm 1 Random Forest Algorithm

Require: B trees to be grown, N size of bootstrap sample, M total variables, m
selected variables, nmin minimum node size

Ensure: Output the ensemble of trees {Tb}B1
1: for b = 1 to B do
2: Draw a bootstrap sample of size N from the training data
3: Grow a decision tree Tb on this data by:
4: while each terminal node of the tree until the minimum node size nmin is

reached do
5: Select m variables at random from all M variables
6: Pick the best variable/split-point among the m
7: Split the node into two daughter nodes
8: end while
9: end for

10: To make a prediction for a new point x, let Ĉb(x) be the class prediction of the
bth random forest tree

11: The random forest chooses Ĉrf(x) = majority vote{Ĉb(x)}B1

uplift. In the standard notation [82], we consider Yi(1) an individual’s i being treated
and Yi(0) for being in the control group. In this case, the causal effect τi is given by
τi = Yi(1) − Yi(0). Having Wi ∈ 0, 1 as a binary variable indicating if person i is in
the active treatment group, and 0 otherwise (control group), the observed outcome is
Y obs
i = WiYi(1) + (1 −Wi)Yi(0).

Based on [71], considering a balanced randomized experiment, the average treat-
ment effects (uplifts) are estimated as:

τ̂ =

∑
i Y

obs
i Wi∑
i Wi︸ ︷︷ ︸
p

−
∑

i Y
obs
i (1 −Wi)∑
i(1 −Wi)︸ ︷︷ ︸

q

, (A3)

which represents the difference in the sample average outcome between the treated
and untreated observations. For the splitting criterion, the gain difference after
splitting is defined as:

Dgain = Daftersplit(P
T , PC) −Dbeforesplit(P

T , PC) (A4)

Where D is the difference and PT and PC is the probability distribution of the
outcome variable in the treatment and control groups [83]. The uplift trees were split
using the Chi function, rooted in a statistical test that determines significant associa-
tions between two categorical variables. Within uplift modeling, this function aids in
prioritizing splits that highlight a significant relationship between the treatment and
the outcome. The divergence in this method is represented by X2:

X2(P : Q) =
∑

k=left,right

(pk − ql)
2

qk
(A5)
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Algorithm 2 Gradient Boosting Machines Algorithm (Generalized)

Require: M iterations, n number of observations, L loss function, yi observed
response, F (xi) predicted response, hm(x) base learner at iteration m

Ensure: Output FM (x) as the final model
1: Initialize the model with a constant value:

F0(x) = argmin
γ

n∑
i=1

L(yi, γ)

2: for m = 1 to M do
3: Compute pseudo-residuals:

rim = −
[
∂L(yi, F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

, for i = 1, . . . , N.

4: Fit a base learner hm(x) to pseudo-residuals, i.e., train it using the training
set {(xi, rim)}ni=1

5: Compute multiplier:

γjm = argmin
γ

n∑
i=1

L(yi, Fm−1(xi) + γhm(xi))

6: Update the model:

Fm(x) = Fm−1(x) + γmhm(x)

7: end for

where p indicates the sample mean in the treatment group, q is the sample mean
in the control group, and k denotes the leaf in which p and q are calculated.

Appendix B Additional Data and Analyses

This chapter presents additional data analysis elements not included in the main
manuscript.

B.1 Correlations

Delegation behavior exhibits weak positive correlations with STEM degrees, extraver-
sion, agreeableness, conscientiousness, internal locus of control, and external locus
of control. Conversely, it has weak negative correlations with gender (female), busi-
ness and economics degrees, and neuroticism. Age and openness display almost no
correlation with delegation behavior (figure B1).

Table B1 displays the results of point-biserial correlation coefficients between the
personality traits and delegation behavior (binary).
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Fig. B1 Spearman correlation coefficients

Table B1 Point-biserial correlation coefficients to binary action
of delegation

Variable Correlation Coefficient p-value

Age -0.019 ∗0.026
Female -0.065 ∗∗∗ < 0.001
STEM 0.078 ∗∗∗ < 0.001
Business & Economics -0.03 ∗∗∗ < 0.001
Extraversion 0.06 ∗∗∗ < 0.001
Agreeableness 0.039 ∗∗∗ < 0.001
Conscientiousness 0.089 ∗∗∗ < 0.001
Neuroticism -0.087 ∗∗∗ < 0.001
Openness 0.024 ∗∗0.005
Internal LoC 0.06 ∗∗∗ < 0.001
External LoC 0.068 ∗∗∗ < 0.001
Generalized Trust 0.044 ∗∗∗ < 0.001
Perception -0.147 ∗∗∗ < 0.001

Significance levels: ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05.

B.2 Regressions

This regression model includes interaction terms to account for the correlation between
independent variables (table B2), providing a more nuanced analysis of the relation-
ships between variables and delegation behavior. In this model, the main effects of
some variables change, and the added interaction terms help us better understand how
the relationships between variables affect the outcome.

The internal locus of control variable becomes significant (p = 0.041) in the model
with interaction terms, while it was not significant in the model without interactions.
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Table B2 Logistic Regression results - delegation, with interaction Terms

Variable Coefficient Standard Error p-value

Constant 5.195 4.046 0.199
Explanation 0.195 0.21 0.354
Payment -1.053 0.24 ∗∗∗ < 0.001
Automation 0.453 0.235 0.054
Female 0.821 0.567 0.147
Age -0.012 0.018 0.501
STEM 0.269 0.232 0.246
Business & Economics -0.193 0.201 0.337
Extraversion 0.018 0.059 0.755
Agreeableness 0.044 0.073 0.552
Conscientiousness -0.411 0.597 0.491
Neuroticism 0.111 0.361 0.759
Openness -0.71 0.416 0.088
Internal LoC -1.266 0.618 ∗0.041
External LoC 0.251 0.604 0.678
Generalized Trust 0.07 0.065 0.284
Perception -0.361 0.14 ∗0.01
Female x Neuroticism -0.234 0.136 0.084
Internal Loc x Conscientiousness 0.136 0.089 0.129
External Loc x Conscientiousness -0.043 0.094 0.65
External Loc x Neuroticism -0.011 0.079 0.894
Internal Loc x Openness 0.139 0.079 0.08

Significance levels: ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05.

This change suggests that the relationship between internal locus of control and del-
egation behavior might be more complex than initially estimated by the first model.
Including interaction terms allow us to capture the combined effects of internal locus
of control with other variables, such as openness, which might help explain this shift
in statistical significance.

The interaction between female gender and neuroticism is significant at the 10%
level (p = 0.084). For instance, women generally report higher neuroticism scores than
men [84–86], which is also true for our sample. Given that women generally report
higher neuroticism scores than men, this term indicates that the relationship between
neuroticism and delegation behavior differs for males and females. Specifically, the
effect of neuroticism on delegation behavior may be more substantial for one gender
than the other. As a result, the positive coefficient for the female gender in the second
model suggests that the likelihood of delegation among females might depend more
on their neuroticism level than males.

Another noteworthy interaction term is the one between internal locus of con-
trol and openness, which is significant at the 10% level (p = 0.080). This interaction
suggests that the effect of internal locus of control on delegation behavior is more
pronounced for individuals with specific levels of openness. For example, participants
with a high internal locus of control and high openness might be more likely to del-
egate tasks than those with a high internal locus of control and low openness. This
finding further emphasizes the importance of considering the interaction effects when
examining the relationships between variables and delegation behavior.
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We also have fit quantile regression models [87] using the cumulative frequency of
delegation for each participant across all periods, removing the time dimension. We
employed this method due to the varying relationships between the variables across
different parts of the outcome distribution and the lack of normality. The results are
summarized in table B3.

Table B3 Quantile Regression results - cumulative delegation
frequencies

Variable Coefficient Standard Error p-value

Intercept 0.386 0.28 0.169
Explanation 0.088 0.059 0.138
Payment -0.367 0.06 ∗∗∗ < 0.001
Automation 0.192 0.06 ∗∗0.002
Female -0.027 0.046 0.558
Age -0.003 0.005 0.526
STEM 0.078 0.057 0.173
Business & Economics -0.051 0.055 0.348
Extraversion 0.023 0.017 0.179
Agreeableness 0.011 0.021 0.598
Conscientiousness 0.025 0.024 0.285
Neuroticism 0.002 0.018 0.927
Openness 0.005 0.023 0.841
Internal LoC -0.02 0.027 0.467
External LoC 0.058 0.028 ∗0.04
Generalized Trust 0.013 0.019 0.49
Perception -0.143 0.034 ∗∗∗ < 0.001

Significance levels: ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05.

This model explains approximately 18.95% of the sample variance. Similarly to the
logistic regression results, these findings show that the condition involving payment
significantly reduces the frequency of delegation (p < 0.001), while full automation
significantly increases it (p = 0.002). Among personal characteristics, only External
Locus of Control significantly contributes to delegation, indicating that participants
who believe outcomes are beyond their control are more likely to delegate decisions
(p = 0.04). Moreover, a negative perception of algorithms significantly corresponds to
a less frequent delegation of decisions (p < 0.001). Other actors such as explanation
condition, demographics, Big Five personality traits, Internal Locus of Control, and
Trust do not significantly affect the delegation frequency. We have also controlled
for correlated variables in this model by adding interaction terms; the results are
summarized in table B4.

Upon adding interaction terms, the pseudo-R-squared value rose to 21.01%, show-
ing a marginally improved model fit. Payment (p < 0.001) and automation (p = 0.01)
still significantly influence delegation. Notably, individuals with a STEM background
(p = 0.017) show a significant positive association with delegation. Openness to expe-
rience negatively correlates with delegation (p = 0.034). A significant interaction
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Table B4 Quantile Regression Results - cumulative delegation frequencies, with
interaction terms

Variable Coefficient Standard Error p-value

Intercept 1.206 1.043 0.248
Explanation 0.039 0.057 0.497
Payment -0.397 0.058 ∗∗∗ < 0.001
Automation 0.151 0.058 ∗0.01
Female 0.105 0.139 0.45
Age -0.007 0.005 0.14
STEM 0.131 0.055 ∗0.017
Business & Economics -0.034 0.052 0.512
Extraversion 0.011 0.017 0.509
Agreeableness 0.015 0.02 0.451
Conscientiousness 0.058 0.166 0.727
Neuroticism 0.02 0.086 0.814
Openness -0.22 0.103 ∗0.034
Internal LoC -0.258 0.144 0.074
External LoC 0.18 0.157 0.253
Generalized Trust 0.008 0.018 0.672
Perception -0.102 0.033 ∗∗0.002
Female x Neuroticism -0.032 0.033 0.331
Internal Loc x Conscientiousness 0.016 0.026 0.548
External Loc x Conscientiousness -0.025 0.025 0.307
External Loc x Neuroticism -0.003 0.018 0.879
Internal Loc x Openness 0.041 0.02 ∗0.04

Significance levels: ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05.

emerges between internal locus of control and Openness (p = 0.04): those high in inter-
nal locus of control and openness tend to delegate more. A negative view of algorithms
remains a strong deterrent to delegation (p = 0.002).

Appendix C Technical Remarks

The documented experiment was executed online, programmed with the oTree open-
source platform [88]. The data work was performed using Python language. The
statistical tests were done using statsmodels [89]. The machine learning models were
deployed, tuned, and cross-validated using Scikit-Learn [90]. Both models were tuned
using a grid search algorithm with the target to maximize the AUC-ROC. It is impor-
tant to outline that this is a computationally expensive procedure. The parameter set
for the Random Forest model is in table C5.

Parameter Value Definition

bootstrap True Determines whether or not to use bootstrap samples when building trees
class weight balanced subsample Adjusts the weights of the classes. balanced subsample means it computes weights based on the bootstrap sample for every tree
criterion entropy Defines the function to measure the quality of a split. entropy is for information gain
max depth 15 Specifies the maximum depth of the tree
max features auto The number of features to consider when looking for the best split. auto means the square root of the total number of features
min samples leaf 1 The minimum number of samples required to be at a leaf node
min samples split min samples split The minimum number of samples required to split an internal node
n estimators 100 The number of trees in the forest

Table C5 Random Forest Classifier parameters
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Similarly, the grid search-generated parameters for the GBM model are described
in table C6

Parameter Value Definition
learning rate 0.05 Determines the impact of each tree on the final outcome
max depth 10 Specifies the maximum depth of the tree
max features sqrt The number of features to consider when looking for the best split. sqrt means the square root of the total number of features
min samples leaf 1 The minimum number of samples required to be at a leaf node
min samples split 15 The minimum number of samples required to split an internal node
n estimators 100 The number of boosting stages to perform. Each stage adds a new tree into the ensemble
subsample 0.7 The fraction of samples to be used for fitting the individual base learners

Table C6 Gradient Boosting Machine Classifier parameters

The cross-validation technique used in both models was the GroupKFold algorithm,
which aggregated samples for the same participant. This procedure was performed in
both the parameter search and model training steps, using five validation folds.

The uplift random forest classifier was implemented using the causalml library
[75]. Since this method, in conjunction with the group cross-validation using synthetic
control groups, was performance costly, we implemented a less-exhaustive approach for
the parameter-fitting method, using the Optuna library [91]. It employs efficient search
algorithms, such as Tree-structured Parzen Estimator (TPE). We ran an optimization
study for 150 trials and selected the parameter set that yielded satisfactory AUUC
scores. One important remark here is that calculating the AUUC in this way might
produce abnormally high results due to the stochastics in place, so practitioners might
have to supervise the optimization process. Table C7 describes the parameter values.

Parameter Value Definition

n estimators 850 The number of trees in the forest
max depth 8 The maximum depth of each decision tree
max features 9 The number of features to consider when looking for the best split
min samples leaf 45 The minimum number of samples required to be at a leaf node
min samples treatment 15 The minimum number of samples in a leaf node that come from the treatment group
n reg 14 The regularization parameter used in the causal tree procedure
evaluationFunction Chi The evaluation function used to evaluate splits

Table C7 Uplift Random Forest Classifier parameters

Appendix D Experiment Design Screens

In this appendix session, we added the most important screens for the experiment.
Figure D3 contains the main task screens for each treatment. Figure D4 shows the
attention questions.
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